Exploiting Spatial Information to

Improve fMRI Pattern Classification

Melissa K. Carroll¹, Kenneth A. Norman², James V. Haxby², Robert E. Schapire¹

Princeton University Departments of Computer Science¹ and Psychology²

12th Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy, June 14, 2006

Introduction

- Classification methods have been successfully applied to pattern extraction from fMRI (e.g. [1,2]).
- Most classification approaches have treated individual voxels as features, ignoring the spatial correlation of activity between voxels.
- The present method, adapted from computer vision, incorporates spatial information via:
 - 1. Richer features that capture correlation between adjacent regions

2. AdaBoost as a multivariate feature selector

This method can improve classification accuracy and has the potential for discerning which types of neural features are most useful for discriminating between cognitive states.

Methods

- **Neuroimaging Methods**
- Two subjects underwent fMRI studies on a 3.0 Tesla scanner while performing a 1-back recognition task of images from seven categories:
 - female and male human faces
 - monkey and dog faces
 - houses, shoes, and chairs
- 8 runs of 10 2-second TR intervals for each of the 7 stimuli classes were obtained.
 - First 10 TRs out of 17 were selected due to adaptation effect
- Cortical surface mapping was performed to produce a 2D image reflecting spatial adjacencies.
- Analyses were confined to the Ventral Temporal region.

Image Features

- Instead of individual pixels, richer features are used for classification.
- Mean activity in the white regions are subtracted from mean activity in the gray regions.
- Features are characterized by:
 - number of rectangles (1-4)
 - orientation
 - size (vert. and hoz.)
 - position within image
- - a) 2-rectangle horizontal b) 2-rectangle vertical
 - c) 3-rectangle horizontal
 - d) 4-rectangle
 - Not shown: (1-rectangle and 3-rectangle vertical)
- Features derived from Viola and Jones, CVPR, 2007

Example Features on Actual Image

One subject's left hemisphere ventral temporal region at one TR

5 AdaBoost as Feature Selector and Learning Algorithm

- Performs multivariate feature selection
- Theoretically and empirically less sensitive to large feature set sizes
- Weak classifier: binary classifier that is slightly better than random guessing
- Basic idea: combine many weak classifiers into a strong classifier
- Algorithm (Freund and Schapire, 1996)
 - Assign uniform weights to training instances
 - On each of T rounds
 - Select new weak binary classifier based on learning algorithm

Assign weight to the weak classifier based on training accuracy

- Increase relative weights of instances incorrectly classified
- Final classifier: weighted vote over weak classifier outputs

Algorithm Evaluation Experiments

- Instances: individual TRs from same subject
- Target classes: 7 object categories
- Training: 1000 AdaBoost rounds over 8 "leave one run out" cross-validation runs
- Weak classifiers: thresholded features from all permutations of:
 - 4 numbers of rectangles + 2 orientations if applicable = 6 types
 - all 100 size combinations between 1x1 and 10x10
 - all positions in image
- Due to enormous feature space (1.2 million features), random feature selection was performed
 - Chose percentage of total possible feature set size
 - Selected feature type and size permutations randomly
 - Computed for all positions in both hemispheres

Results

10

Comparisons: AdaBoost vs. Artificial Neural Networks, Richer Features vs. Single Pixels

Performance by Feature Set Size

EBC Competition Data

- Raw pixels with no feature selection: AdaBoost versus ANN
 - Subject 1: AdaBoost better on 29 of 30 regressors; average relative accuracy change: 30.6%
 - Subject 2: AdaBoost better on 28 of 30 regressors; average relative accuracy change: 24.2%
- 5 random 5% AdaBoost runs versus raw pixels
 - Subject 1: Richer features better on 57% of runs; average relative accuracy change: .3%
 - Subject 2: Richer features better on 67% of runs; average relative accuracy change: 1%

Accuracy by Rectangle Area

important features

Conclusions

- Novel approach for classifying fMRI images
 - Use of features that capture spatial information
 - Multivariate feature selection
- Potential benefits
 - Improve classification accuracy directly
 - Improve classification indirectly by revealing important features
 - Useful test-bed for exploring neuroscientific questions • e.g. What is the optimal spatial frequency for classification?
- - Varies across subjects
 - Not clear if justifies added computation
- Generally a moderate classification improvement

More exploration of feature importance is warranted

Memory Search. Science (310: 1963-1966).

References

- Mitchell, Tom M., Hutchinson, Rebecca, Niculescu, Radu S., Pereira, Francisco, Wang, Xuerui, Just, Marcel, Newman, Sharlene. (2004). Learning to Decode Cognitive States from Brain Images. Machine Learning (57 1-2: 145 – 175).
- Polyn, Sean M., Natu, Vaidehi S., Cohen, Jonathan D., Norman, Kenneth A. (2005) Category-Specific Cortical Activity Precedes Retrieval During
- Viola, Paul, Jones, Michael. (2001). Rapid object detection using a boosted cascade of simple features. CVPR.
- Freund, Yoav, Schapire, Robert E. (1996). Experiments with a New Boosting Algorithm, in Proceedings of the Thirteenth International Conference on Machine Learning (148-156). Morgan Kaufmann

An electronic copy of this poster is available at http://compmem.princeton.edu/publications.html